
Python is an "Object Oriented Language", which in this case means
that almost every variable is accessible via a similar interface.
Python has the notion of a data model where objects are the
abstraction Python uses for data, and as many things as possible
are stored in these objects as possible across the language.
These are PyObjects in the source and if you look around the source
code you'll see these PyObjects all over the place.

What is a PyObject? From the source (cpython/Include/object.h):

● This gives us the base from which everything else is built.
● This is a placeholder into which we can store arbitrary variables.

The built-in keywords are PyObjects but are stored in a special spot.
There's a fixed sized area set aside for built-in objects.
Values such as True, False and None are stored here. They are all
stored as singletons.
This means that any identity comparison will always be true for
these particular objects.
For example any variable that has the value of None will always
point to the same address. They will have the same id as there is
only one None object which lives in that special area of memory.

● == checks if two variables have equal contents.
● is checks if two variable names are the same variable

(same spot in storage space).

CPython
Memory Structure

Janis Lesinskis, Alysha Iannetta

Where objects are stored and what those objects look like in memory. This

will help explain the underpinnings of the way in which equality and identity

checks work in CPython and also how Python objects get stored in RAM.

Identity vs Equality

t = True
t1 = True
n = None
n1 = None

CPython Objects - Where everything goes

First some assumptions:
● We are going to assume that RAM is addressable in a sequential manner.
● We are also going to assume that a given address is a unique location that we can store information at. Or alternatively that any two

distinct addresses are distinct locations in memory.
When you start the CPython interpreter it sets up the variables and memory that the interpreter needs to run your code. It generates this
memory layout:

Built-in Objects PyObject

Stack Frames

RAM Addresses
Fixed Size Grows/ Shrinks

Stack Frames PyObject Storage

Grows/ Shrinks

Built-in Objects

Functions:
User defined variable

labels

User defined variable
storage

True
False
None

etc

n = None
n1 = None
n2 = None

a = 1234
b = 1234
c = 5
d = a

a is b
False
a == b
True
d is a
True
d == a
True

n

n1

n2

c

a

d

b

StorageVariable
Names

Built-ins

Variable values
(PyObjects)

Integer Cache
(Python caches

integers in the range
[-5, 256])

id(n)
1917035664
id(n1)
1917035664

typedef struct _object {
 _PyObject_HEAD_EXTRA
 Py_ssize_t ob_refcnt;
 struct _typeobject *ob_type;
} PyObject;

#define _PyObject_CAST(op) ((PyObject*)(op))

typedef struct {
 PyObject ob_base;
 Py_ssize_t ob_size;
} PyVarObject;

n is n1
True
n == n1
True
n1 is n2
True
n1 == n2
True

id(t)
1916989600
id(t1)
1916989600

ob_refcnt

This provides for the
reference counted memory

management of anything
stored within it.

*ob_type

A pointer to a type object
that indicates the type of an
object. Everything in Python

must have information
about the type, otherwise

Python wouldn't know how
to handle these entities.

PyObject ob_base

Extends on PyObject.

Py_ssize_t ob_size

Used to count size of objects
that have some notion of

length.

PyObject VarPyObject

None

True

False

5

1234

1234

Stack frames contain all the information required to allow function calls to work.
Functions are themselves variables but they have a few extra things going on too. Specifically they need to be able to set aside some
memory for storing the references to the other variables stored in them.
When we create a function we have to put aside the memory for all the variables inside it as well as the function call machinery.
This is most easily achieved with a stack based structure and therefore is how CPython has implemented it. These entities are called frame
objects.

Stack Structure

Calling a
method or

function
pushes a new
stack frame

onto the
stack.

Stack frames
are popped as

soon as the
method/
function
returns.

Global Frame
This stores all global

names and values
until their reference

count reaches 0.

The stack grows and
shrinks as functions

and methods are
called and returned.

a = 10

def foo():
a = 5
c = 7
return a + c

foo()
PyFrameObject

‘Stack Frame’

a 10

foo
Global Frame

Stack Frame
foo

a 5

c 7

Return 12

Frames
Name Value PyObject

Type Name Value

Function foo

PyObject

type(‘abc’)
<class ‘str’>
type([1,2,3])
<class ‘list’>

You can find the type of any
item in Python using type:

